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~We consider a head—on collision between two solitary waves onthe surface of an inviscid , homogeneous fluid . A perturbation
method wnich in principle can generate an asymptotic series of
all orders, is used to calculate the effects of the collision.
We find that the waves emerging from (i.e. long after) the
collision preserve their original identities to the thir d order
of accuracy we have calculated . However a collision does lJave
imprints on the colliding waves with phase shif ts and shedding
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‘
~of secondary waves. The latter propagate with diminishing
amplitudes in the direction opposite to that of the main
waves. We have also calculated the maximum run—up amplitude
of two colliding waves. The result checks with exisiting
experiments.~~
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Abstract

We consider a head-on collision between two solitary waves

on the surface of an inviscid, homogeneous fluid. A perturbation

method which in principle can generate an asymptotic series of

all orders, is used to calculate the effects of the collision.

We find that the waves emerging from (i.e. long after) the

collision preserve their original identities to the third order

of accuracy we have calculated . However a collision does leave

imprints on the colliding waves with phase shifts and shedding of

secondary waves. The latter propagate with diminishing amp litudes in

the direction opposite to that of the main waves. We have also calcu-

lated the maximum run-up amplitude of two colliding waves. The

result checks with exisiting experiments.
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I. Introduction

We recast in Sec. II, the equations of motion of an inviscid,

constant density fluid with a free surface into a pair of equations

in terms of the free surface elevation h(t,x,y) and the velocity

along a horizontal stream bed W(t,x,y). These equations are con-

venient for a perturbation scheme to be introduced in Sec. III to

study a head-on collision between two solitary waves which are small

in amplitude (~~
— << 1), and long in wave—length (

~~— >> 1). Where

a is the measure of amplitude, A the wave—length , and h0 the un-

disturbed depth of the fluid . The amplitude and the wave-length

parameters are related by Urseilt s ordering for theory of shallow

water i.e. aX 2 h~ . We have carried out the calculations to the

third order of approximation .

In the first order approximation , we have two independently

moving solitary waves aS(~ ) and bS (n). S(x) sech2 ~~ , a pro-

gressive wave of permanent type which satisfies the Korteweg-

deVries equation. The variables ~ and ~ 
denote the right- and

left-going wave-framed coordinates respectively . The constants

a and b specify the heights of the waves. In the second order

• approximation, we find that the wave field is modified by:

(1) quadratic terms in S, (2) change of wave speeds and (3) addi-

tion of phase functions 0(iJ (~ ) and ~~~~ (F) to E and r~ respectively.

For two waves at large separation, i.e. before or after collision,

the first two corrections above reduce to Laitone’s (1960) second

order calculation of a single solitary wave. On the other hand,

we can also use the result in (1) to calculate the maximum run-up

amplitude during the collision. Our result checks with an earlier

I
• -~ —•---— -•- —
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calculation of Byatt-Smith (1971). Since, up to this order of

accuracy, the phase function 9 (or 
~~

) is a function of n (or E~)

alone , and differs by a constant value through a collision, this

value represents a phase shift for a right— (or left— ) going

solitary wave. This result agrees with that of Oikawa and Yajima

( 1973) .  In the third order approximation, we obtain as before,

those three corrections to the wave field . The first correction

is a polynomial of third degree in S. This polynomial in S and

the wave speed correction reduce as the separation between waves

increases, to the known result of Grimshaw (1971), Fenton (1972) per-

taining to a single solitary wave with third order accuracy . How-

ever , the phase functions obtained become functions both of ~ and ii.

This gives different values of phase shifts at different points in

a wave. Unlike the uniform phase shift in the second order approxi-

mation which preserves the wave form , here these variable phase

shifts cause a distortion of the wave form in addition to a simple

translation. Since this distorted wave field does not satisfy the

equation for waves which are propagated without a change in shape

and speed, we are forced to investigate in Section V, the slow time

evolution of this distorted wave forms. We find that the waves

eventually transform back to their original forms with shedding of

secondary wavelets. These secondary wave~ propagate with diminish-

ing amplitude in the direction opposite to that of the main

waves. Thus we can still speak of preservation of wave form up to

the third order of accuracy , with the understanding that there exists

uniform phase shifts as well as shedding of secondary waves. We stop

our calculation at the third order. However we feel after working

j
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3 1long with the perturbation scheme used here, that the higher order

results will be essentially of similar nature. There are two

imprints of a collision between two solitary waves: uniform phase

shifts and shedding of secondary waves. We have also calculated

the maximum run-up amplitude up to the third order of accuracy

for two colliding solitary waves. The result agrees very closely

with the numerical and experimental results of Chan and Street

(1970). It also checks with Maxworthy ’s experiment (1976) for

a solitary wave reflected from a wall (see Fig. 2).
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II. Basic Equations

We take the velocity field of our flow problem to be described

by a potential ~ (t,x,y,z), satisfying Laplace equation. The free j
surface, where the pressure vanishes, is specified by an unknown

function z = h(t,x,y). The fluid is supported by a horizontal

plane at z = 0, where we set the normal velocity = 0. It is

easy to show in this case that the potential 4 can be expressed as a

Taylor series at z = 0. Using V 24 = 0 for z > 0 and = 0 at z = 0,
we obtain 2n

4 (t,x ,y , z) = ~ (_ 1)
fl 

~~~~~~~~~~~~ 

(1)
n=O

where

~(t,x,y) = 4 (t,x ,y,z=O) and V = i + j  ,

representing a gradient operator in x,y—plane . We can now express

the kinematic condition at the free surface as

(2)

I
and the Bernoulli theorem also applied at the free surface as

+ gh + + + ~~~ ) = C ( t ) .  (3)

See Whitham , Chapter (13).

In terms of ~ ‘ these become I ‘
2n+1 •

÷ 
n~O 

T2n+1)! V
2
~~(V~ )) = 0 , (4)

+ gh + ~~(V~~) 2 
+ 

~~~~~ (_ 1)
fl (~nJT~

7 
~t +

+ 
1 ~~ (l)m (2n)V mf1~~ ~

2n
~
m_1

~ j =C (t). (5)
m= 0
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where the symbol tI *lI stands for the vector inner product for even

m and the usual arithmetic multiplication for odd m , and-(~~ ) =

(2n)! the binomial coefficients. We shall consider waves inm! (2n—m) !

a channel. We therefore drop the y-dependence in h and ~~~ . By

taking the x—derivative of (5), we obtain in place of (4) and (5)

the following two equations

+ {hw + 
f l 1  ~~~~~~ X 2fl }=  0 (6 )

+ ~-~~gh + + 
n~1

(_U n 

~~~~~~~~~~~~~~ 
+

+ 
~ 2rn (_l)m (~~~~._~ ~~~~~~~~~~ = 0 (7)

m=0 ~x ~x

where w = represents the velocity at the bottom of the channel.

Both of the above equations are in the conservative form. It

is interesting to point out that two more conservation laws can be

derived from (6) and (7). They represent conservation of horizontal

momentum and total energy , i.e., - 
-~

u dx) + ~_ [ f ( u 2 
+ 2)dz] = 0 ,  (8)

~~
- [

~~ gh
2+ ~ f(u

2+v2)dz] + I dz u(~~(u
2+v2) + + gz], (9)

and h~~
= g (h-z) + 

~~~~~~ 
+ u + v ~~)v dz.

where u = and v = both are expressed in w by (1). We

shall however in this paper use Eqs. (6) and (7) only.

I. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•
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Ill-A . Perturbation Solution for Two Head—On Colliding Solitary

Waves.

Consider two solitary waves, far apart, of small but finite

amplitude and heading towards each other . The time evolution of

their interaction , and the final state after their collision

will be our main concern .

We introduce the following coordinates transformations (wave-

frames)

= V~- 
k( x-C~~t)

( 10)
= /~ 

9.(x+C~ t)

where 0 < c << 1, c is a dimensionless parameter representing the

order of magnitude of the wave amplitude. The scaling of the hori-

zontal wave length in accordance with Ursell’s relationship is

taken as 
~~~~~ 

leaving k and 9. as the wave numbers of order unity

f or the right— and left—going waves respectively . The right- and

left-going wave speed CR, CL are to be related to the amplitudes - - -

of the waves. In the limit of infinitesimal amplitude, they take

the value of linear wave speed (gh0)
1”2. Anticipating a difficulty

to show up in our perturnation method we introduce the following

transformations of wave-framed coordinates with phase functions.*

* This is essentially the method of strained coori dnates f i r st
introduced by Poincare (1892) for ordinary diff-~rential equations and - •

1

later generalized to hyperbolic partial differential equations by

Lighthill (1949) and Li (1954). For a detailed discussion we refer

the reader to Van Dvke ’s book on Perturbation methods in Fluid-

Mechanics, chapter VI. Academic Press, New York (1964).

I- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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= — ck6 (~~,ri)
(11)

n o = fl — cL4~~~,n)

when 9(~ ,n) and ~~~~~ are to be determined in the process of our

perturbational solution of (6) and (7). These functions, intro-

duced for purpose or making asymptotic approximation , allows us

to calculate phase changes due to collision.

Using (10) and (11) we obtain the transformation between de-

rivatives as

+ CR •

~~~ 
= •(C R+C L ) (9. ~~— + ek9. (

~~~~~
- 

~~
-
~~
- - 

~f ~
- - ) ] (12)

- CR = - 

~~~
(CR+CL ) [k h- + ck9. (~f ~~

— - ~~ ~
-
~~) J  ( 13)

where D (1 - ck9.}~) (1 — c9. 
~~

-
~~~~) 

— c2k9. ~~~~~~ ~~~~ .

Setting h = h0(l+C) , we rewrite (6) and (7) into

~~ 
± CR ,L ~~~~~~

] [w + C~ J + 
~~~

— F~ = 0, (14)

where C = is the linear wave speed, and

2
F~ = ± (C_ C R ,L ) (w+C~ ) + 

~~
— ± Ccw

+ ~ (_ 1)
fl 

2
~~(1-f~~) 2’

~~~ a2~ 
+ 

C(l+-CI ~~~~~~ +
n=l (2n) ! a-t~~

2
~~

1 — 2n+1

1 2n m 2n a m w ~ 2n-m~
~ (— 1) 

~~~~~~~~ ~n—m~~~ 
( 5 )

ax ax

It is convenient to make the following change of dependent variables

W + C ~~ = 2cCa
(16)

w — C~ = —2 c C~~,
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which give us w = cc (a-13) and t = c (ct+13). Together with (12) and 
-

•

(13) we can now represent (14) as

2Cc (CR+CL)[9. ~~ 
+ ck 9 . ( O  — e~ ~~~~~~

) ]  + fk  + ~ +

+ ck9. E — ( 9 — ~~Y~-~- — ~-~ (9—~ )f_J}F~ = 0. (17)

A similar equation for ~3 is obtained by replacing cx by 3 ,

~ by n, k by 9., and 9 by 4. We need hereafter consider (17) only.

We now express the new variables in the following power series

= + 

~~ l + +

= + + £ 2 13 +

= 80 (n) + 
1~~~,ni) + ...

= • ( ~
) + 

~~~~~~~ 
+ ..•.  (18)

CR = C( 1  + caR 1 + c 2a 2R 2 + c 3a 3R 3 + ...
CL = C(l + cbL 1 + c 2b 2L2 + c 3b3L 3 + ...

Substituting (18) into (17) we obtain a lengthy expression

in power series of c , (See Appendix). The coefficients of

e , ~
2, ~~ and part of will , however , be presented in

sequel as follows:

• - i) Coefficients of c.

The equations are simply

and ~-~-.- = 0 .
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Their solutions are
a0 af(-~), 8c, = bg(ri) (19)

where the constants a,b appearing (19) as well as in (18) are in-

troduced to allow us to take f(0) = g(0) = 1, f and g are arbi-

• trary functions to be determined next.

ii) Coefficents of

The equation for a1 takes the form

49.~~~! + ak f’) — 2R1a
2kf’ + 3a2kff” — b29.gg’ — ab9.fg ’

h 2 
~ 3

— ab kf ’g ÷ .~2 (ak fH ~ + 2b9. g” ) = 0. (20)

The terms appearing in (20) can be grouped into three kinds:

a) Secular terms : Those which are independent of ri. There
• h 2k 2

are three of them in ( 2 0 ) ;  k a ( — 2 R 1af ’  + 3 a f f ’  + f ” ) .

Upon integrating these with respect to 
~~, 

we obtain secular be-

havior , i.e. a contribution which becomes unbounded in time or

space. We set these secular terms equal to zero and obtain after

letting
= , h~~k

2 
= 3a , (2 1)

an equation which f has to satisf y, i.e.

f ” 1  + 3ff ’  — f ’  = 0, or f = S(~~) = sech2(~ ). (22)

• Similarly we have from the equation for ~~~,

L1 = ~~ , h~~9.2 
= 3b, g = S( r i ) = sech 2 (~~) .  (23)

Ill 
-~~~~~~ -
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b) Non Local terms .

These are not secular in the present, they will be if lef t

as they are. The solution of a1 due to them comes under an in-

tegral sign. Physically this represents the memory of a collison.

In (20), we identify the following two terms to be in this category.

4kaL f’- abkgf’ .

We again set this equal to zero, and solve for 00 as

- = 

~~ 
g (ri 1)dn 1

. (24)

Similarly we have

= ~~~~ J f (~~ )d~ . (25)

(The above result agrees with an earlier work by Oikawand Yajima.)

The choice of the Lower Limits of integrations will be explain-

ed in the next paragraph. Note that the term abkgf’ as mentioned

earlier is non secular at this order. Had we let 00 = 0 we could

have solved a1 with a term of the form f’f’1 g (n1)dn 1. Such an a1

will cause a secular solution in a2.

We now identify the right- and left-going waves as those

described by f and g respectively. We shall specify the location

of these waves before and after collison in terms of asymptotic

values of ~ and i as follows:

Before After
• collision collison

Right—going wave f -~~ T) -~ +oo

Left-going wave g +~~ 
+ -

~~~

We can then calculate from (24) and (25) the shifts of the waves

I 

-

. 
- 

after collision. These phase shifts make a uniform translation

- -~~~~ - -
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of the ~ and r~ while leaving the profiles intact. We shall call

these simple phase shifts.

c) Local terms .

The remaining terms in (20) can be integrated to give

= ~~ b 2g~ + f g - 
~~~

— g + a 2F1(~~) (2 6)

similarly

= ~~ a~f~ + fg — 
~~ — f + b2G1(n) (27)

where F1(F~) and G1(ri ) are two arbitrary functions to be determined

from the consideration of the secular terms in the next order of

approximation .

iii) Coefficients of c ~~~
. 4

The number of terms in this case is already rather formidable,

we shall list them separately in the different groups only .

a) Secular terms: Setting these equal to zero, we have

F’j  + ( 3 f — l ) F 1 = (2R 2 — ~~ ) f  + -
~~ f 2 

+ ~ f 3. (28)

The f i r s t  term on the right of (30) gives a solution of F1

t as (2R 2 - 
~~~~~~ ) (f + f ’ )  which is unbounded as ~ + +

~~~
. We thus

require the coefficient of this term to vanish i.e.

19R — — . - ( 9 )

This gives a second order correction for the wave speed .

The remaining equation can be readily solved and we have

• F1 = — ~~~ f
2 +f. (30 )

• ~~~~~~- -  ~~~~- -
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We have now the complete solution for a1 and 131:

= ~ (7b
2g2 — a2f2) — 4(b

2g — 2a2f) + fg, (31)

= *(7a
2
~
2 

— b2g2) — ~ (a
2f — 2b2g) + fg. (32)

To the result of Eq. (30) we can also add one of the bounded homo-

geneous solutions of (28) , which is the first derivative of f.

However as we go to higher order , it is seen that such an addi-

tion only amounts to a uniform shift of the origin of ~ which

represents a simple phase shift defined above. We will henceforth
drop it entirely.

b) Non Local terms.

These terms will give the solution of 01 and ‘~l 
as

= ÷ ~1I , O (
~T g2_ (!~! + ~)bg]dn 1, (33)

= 
~~~~~~

— 1 + ~f ( - ~ a f — (-i-— b +

• ( 34)

Each of the second terms above is of similar nature to the first

order phase shift formulas (24) and (25). They give simple phase

shifts. Note however that the first term in (33) depends

• on ~ as n -~ +o~. Since 0, enters into the ar gument ~ of the func-
-I.

tion f , we see that the wave profile of the right-going solitary

wave differs from the one before collision. It tilts backward

to the direction of propagation of the wave. (See Fig. 1 and the

discussion in ii below). Similar behaviour appears in the lef t—

going wave because of the first term in (34).
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In section V we will study the time evolution of these un-

symmetrical waves and show that its unsymmetrical part, acquired

during collision will separate and propagate away from the

symmetric wav~~of permanent type which are identical to the waves

before collision.

c) Local terms.

After integrating the local terms, we obtain

a2 = ~~~~~~ b~ g3 
+ 2ab2fg2 - ~a

2bf2g - ~~ ab
2fg + ~~ a~bfg +

~~ b
3g~ — ~~ b

3g ÷ a3F2(E). (35)

A similar expression is obtained for 
~2’ 

i.e.

= -
~~

-
~~~ a~~~

3 
+ 2a2bf2g — -

~~ ab
2fg2 - ~ a~bfg ÷ ~~

- ab2fg ÷

~4 a3E~ — 
~~~~ a~ f + b3 

C
2

( T 1) . (36)

Th~ arbitrary functions to integration F2(~ )and G2(ri ) like its counter-

part in the previous order of approximation must be determined from

• the secularity—free condition in the next order of approximation.

iv) Coefficients of

We shall focus only on the secular terms in this order.

• - Setting them equal to zero, we obtain an equation for F2 similar

to (28) as follows

F~ + (3 f—1 )F 2 = (2R 3— ~~ ) f  — 
~~~~~~~~

. f2 + •~•~i f 3 
— •~~~~! ~~

4
. (37)

The above equation is solved by
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43
R 3 =~~h and F 2 (~~) = ~~~~~~f 3 _ 4 ~~~~f 2 +~~~~~f. (38)

Similarly

55 197 3 217 2 43and G2(~) =~~~-5 g - 1~~-g +~~-~~g (39)

for the left-going wave. This completes our result for a
2 and

as follows -

a 2 = 4~ 
b3g 3 

+ 2ab2fg2 — 
~~~ a2bf~ g - 

~~
- ab~ fg + ~~ a~ bfg + ~~~~ b 3g2

— 
~~~~ b 3g + 

~~~~~~ a~~ — a~ f~ + ~~~~~~ a 3f 3 
, ( 4 0 )

and

~2 = 
~~~~ a3f 3 

+ 2a2bfg2 — ~~ ab2fg2 — 
~~
- a 2bfg + ~~ ab 2 fg + .

~4 a 2f 2

— 
~~~~ a 3f + ~~~~ b3g - 

~~~~~~~~~ b 3g 2 
+ ~~~~~~~~ b3g3. (41)
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111-B. Summary of Results in this Section.

We have obtained in this section, the following results

for the velocity at the bottom , W, the perturbed free surface

elevation 
~~~~, 

the wave speeds CR,CLP and the phase functions O ,~~.

W(f~g) = cC{ af 
- bg + c (—a 2f2 + b 2g 2 

+ ~ (a
2f-b2g)] +

c 2(~.(a
3f3—b3g3) — ~~ (a

3f2—b3g2) + ~-~ (a
3f—b 3g)

+ ~~a
2bfg_ab2fg) — ~ (a

2bf2g—ab2fg2)]} (42)

and

~.(f,g) = c1af+bg+ [~-(a
2f2+b2g2)+~abfg + ~ (a

2f+b2g)] +

+ c2[!~~(a
3f3+b3g3) — ~~-(a

3f2_b3g2) + ~ (ab
2fg2 +

+ a2bf2g) — ~ (a
2bfg + ab2fg) + ~ (a

3f+b2g)]} (43)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( 44 )

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(45)

• 0 = ~~.{J (l + ~cbg - ac - ~e ) g  dfl + 9caf (~ )Jg d~} (46)

• 4’ = (1 + ~~ af — ~~~~~~ bc — ~~-)f  d~ + 9Cbg (fl )~~~f d~ } ( 47)

where f = sech 2 
~/2 , and g = sech 2 n/ 2  with ~ and Ti as defined

by Eqs. (10) and (11) .
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To compare these results with the earlier works on one soli— p

tary wave of Laitone , Grimshaw and !‘enton , we note that C

as used here is dif ferent  from their non dimensional wave ampli-

tude parameter , which is defined as the ratio of maximum wave

height , amax , to the undisturbed depth ( i .e .  rn:x) They

expressed the wave number and wave speed in powers of this

parameter . On the other hand we , in this paper, have fixed the

wave number parameter as ~
1/2 and expanded the other quantities

in terms of c .  From (44) we see that 
- -~ -

j ( l ,0) = ca + a2e2 (-~) + a 3C 3 
~~ + 0 ( C 4 )

(4 8)
and 2 2 5  3 3 1 3  4

- C (0,l) = cb + b c (i-) + b c i.— + O (c )

Defining CR = C(1,O) and £L = C (O ,1), each of which is the 
—

- amplitude parameters used by Laitone, Grimshaw and Fenton, we have

after inverting the above relationship

5 2  3 3 4ca = C
R 

- 
4

C
R 

+ 
~~ 

C
R 

+ O(c,~) (49)
C b C L C

~~~
+

~~~~
C
~~~

+ O ( C
~~

)

We now rewr ite ( 4 4 — 4 6 )  in terms of C R and C L as follows :

c C~~
n) = C R {f + 

~~ 
CR (f~~

f) + 
2~ l0l ~

3 
— 
15]. 

~
2 

+ ~~~~~ +

C~~{g + ~~
- c~~(g 2-~~) + C~

(.
~F g 3 

- ~~~~~~~ g2 
+ ~~ 

g ) }  +

CRCL{2 
+ [~q~(C~ f+c~ g) — ~!(c~ +c~~) ] } f g  (50)

(51)

C C

j ~~~~~~~~~~~~~~~~~~~~~~~~ (52)

Lfr .~~~~~~~~~~ 

-
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~ . 

3c~ 71 2 h C
L r~ 7-

~~ 
= 

~~ 
—~~ (l 

- 

~~ 
C

R 
+ 

~~~~~~~~ 

CR ) { x C Rt + •

~~

— r ’ j (1 + CL
(
2 

g -

0

- ~~~ C~~]g dri + 9C
R

f I: g d~ ]} (53)

_
~~~~~~~~~~ (1_ ~~~~C + 71 C 2) { x _ c Rt + e }

i
\{i~~(1 5 C + 71 C 2) { X+ C t +

hO 
~~

[ (l+ C R (~
f -

~~
)

- 

~~ 
C~~ )f d~ + 9C~~g ~~f dc l)  (54)

1 3C
L 5 71 2= ~ —~~ ---~— ( l  - 

~~ 
C

L 
+ 128 CL)~

x + CLt + ‘P)

The last list of (53) and (54) serve to define 0 and ‘P.

The following qualities are presented for convenience of com-

parison with the experimental results of Chan—Street, and Maxworthy.

(i) phase chages

( n~~~—~ 0 -i- fl
Before collision j

(
~~~~ + +oo ‘11 + 0

JT_• C Ic
( Ti -

~~~ 0 = h0~
J ~— [l+~-- - 

~~
CR] + 9h

Jr 
C Rf

A f ter coll ision

- 
• 

~~ 
6 L 

= 

~~~~ 4~~
CL

) - 9h
Of~~~

c L~

1~0 = ~~~~~~~ + + 9h~,\~
iiT C R~

+ ~~ — - ~~~
c L) - 9h4~,

_ c
L~ (56)

The first term in the right of (55) or the first term in the

1

9ht 0f (56 e s s 1 s t0 T trans 0

~~~~~
~1
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without change of wav e profile) . This agrees , in the first order,

with that of Oikawa and Yajima.

(ii) Distortion of Wave Profile.

The second term in the right of (55) and (56) is a function of E

or n respectively, i.e. different phase shift at points in the

wave. This causes a distortion in the wave profile. For waves of

large separation , the localized interaction terms which are pro-

ducts of f and g) in (50) vanish. Following the right-going wave

we then have after setting g = 0,

= C
R

(f + ~~ 
C

R
(f 2_ f )  + C 2(~~~ ~

3 ~l5l ~
2 

+ ~~~~~~~~~ ( 57)R 8 0  80

5 71 2with f = sech~ [h0J~~~ (l 
- 

~~ 
C

R 
+ 128 C

R
) (x — CRt + 9)], (58)

where the values of ~ before and after collision are given in (i).

In fig. 1 we plot the perturbed free surface elevation before and

after collision according to Eq. (57) and (58). Before a collision,

0 = 0, the prof ile is symmetric but thinner than the first order

approximation given by (58). After the collision, the wave becomes

unsymmetrical and tilts backward to the direction of its propagation. I ~ 
-

•

We have also plotted the difference between the unsymmetric and the
k

symmetric profile (graph No. 3). The propagation of these tiled

waves will be discussed in the next section.

In addition to the til ting discussed above , a second hump will

appear in the right branch of the wave profile for values of
~—~— 

•

CR ~ (48)~~ ”~ 
-~ .3799. However for such an-C R the higher order

-i

:::ms 

which are neglected 

~ 
comparable 

T i 

tTTm5 -
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returned . The significance of this hump is thus not clear and

we shall say no more about it .

(i ii)  Maximum (Run-up) Amplitude during Collision .

For two head-on colliding solitary waves with their maximum

heights before collision defined as C
R 

and C
L I the Run—up at a

point (
~ ,n) is defined by the value of the perturbed free surface

elevation of Eq. ( 5 0 ) .  It is easy to see that the maximum Run-up

exists at the point (E ~,r i ) where f = 1, g = 1 and hence

C C
Maximum Run-up = C

R 
+ C

L 
+ ~~~ L 

+ ~ C
R

C
L

( C
R

+C
L

) .  (59a)

For two identical solitary waves CR = C L and the maximum Run-

up is -

£2 
- 

-
Maximum Run-up = 2C

R 
+ + ~~ C~~ . (59b)

In figure 2 we plot the max Run up of ( 59—b ) , for the f i rs t,

second (Byatt-Smith) , and third order approximation , respectively.

The existing numerical , (Chan and Street) as well as the experi— -•

mental results, (Chan and Street , Maxworthy) are also presented (in

the plot). it is seen that our third order result is in complete

agreement with the numerical values of Chan and Street for

C
R ~~. 

0.5. The experimenta.1 data has a sizable spread. Even then,

the third order result seems to represent them best if one excludes

those data of Maxworthy which represent wave-wave interaction ex-

periment.
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V. Time Evolution of the Unsymmetrical Waves.

It is seen from the results of the previous sec tion that the

after—effect of a collision on a solitary wave is manifested only

by the phase functions 0 and 4’ As the collision process comes

to an end designated by ri + +°~ and ~~ 
+ -

~~~~ for the right- and

lef t going wave respectively, we see that , say for the right—going

wave , all the terms associated with g(ri) vanish , except those

appearing in the phase function wheie g is under an integral sign.

After dropping all- terms which are products of f and g, we are

left with a solitary wave propagating with a constant speed. This

wave, however , is not a solution to the equation for wave propa-

gating without change of speed and shape . In this section we

consider the slow time evolution of this unsymmetrical wave.

• We first derive the appropriate governing equation , and then —

solve this with the wave profile emerging from the collision as

an initial data.

Since the F dependence of 0 f i r st occurs in the third order

of C , we take that a slow time dependence does not come in until

that order of approximation. We assume, following the right-

going wave that

~ CS(~~ ) + c2
~~2 C , + c

3
~~3(~~0

,T) + ... (60)

= cC
R

[S(
~ o

) + c  W~(~ 0) + £2 W~ (~ 0, t) + ...] (61)

where = k (x
~
CRt) , 

-r in and w3 allows the slow time

evolution of the wave in a moving frame fixed in the right-going

wave. We have also assumed that the left—going wave is far away

and exerts no more effect on the right-going wave. We define

1 - - - - - -
~~~~~~~~~~~~~~~- - - •
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the slow time variable by

r = ~~~~ k CR t. (62)

Substituting ( 6 2 ) ,  (61) , and (60 )  into the basic equations (6)

and (7), we obtain equations for S in the first order approxima-

tion, and C 2, W~ for the order in C
2
. The solutions of these

eqautions are 
-

R1~~~~~, S = sech
( 63)

R2 =~~-~, W~~—S
2 + S , C 2 4 5~~~~ 2

These are equivalent to the solutions obtained by Laitone.

To the third order of approximation, we have in terms of W

a ‘

aF ~
2 + (3S—1)W~ + 2) ~~

-
~~

-— dE = (2R 3— gg-)S — -
~~
— S +

0 3 4+12 S — 9 S . (64)

We decompose W~~(~0,r) above into a stationary solution plus a

transient, i.e.

W~~( ~ , r )  = W3(~0) + V (~0,r). (65)

These functions then satisf y

d 2W3 
+ ( 3S—l)W = (2R — ~~)S - ~.a s2 

+ 12 S3 - 9S4 (66)
d 56

2
and .

V 
_ _2 ~~

— + ~~[a _ 
— + (38— 1)V] = 0 (67)

a~ a~
2

4 0

The solutions to (66) are

-
~~~ W3 -~~~ S

3 -~~~ S
2 +~~~S and R3 =

~~b , 
(68)
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which is equivalent to the third order stationary solution of

Grimshaw .

We now consider the time evolution of Eq. (67) with an initial

data being the difference between the wave field of the right-

going wave immediately after collision and that of W3 (F~0) of ( 6 8 ) ,  i .e.

Curve No. 3 in Fig. 1. It can be shown that for any

V~~(~ 0~ T )  = F(~~ ,k)e~~ ~~
T +ik~ (69 )

is a solution of (67) provided that we take

2 2 s’ (~F U 0 , k )  = ik(k —1)- + 2ikS (~~ ) + s’ + 2k 
~~~~~

-

~~~~~~~~~

--- (70)

and k3 + k + ii = 0.

This form of solution is first suggested by Jeffrey and

Kakutani (1970). Since F(F~0,k) is bounded for all 
~c~

’ to have a

bounded solution V ( E 0,T) in 
F~~, we must take a real k , which in

turn requires a real p . Therefore the general solution for V in

(67) can be represented as an integral over all real k, i.e.

-i— +ik~V (~ 0 1k)  = I d k  A ( k )  F ( ~ 0 ,k) e (71)

where A ( k )  is determined by the initial data V (~0,-r=0). The

asymptotic behaviour of V (~ 0,-r)* for t is readily obtained by

* Since S ’ is a solution of (67 )  corresponding to u = 0, any
initial data of this form will remain unchanged in time .
The simple phase shifts are of this sort. They are exceptional

to what is to be said below. _— -
~~~~~~~~

--
----

--
--

~~~~~~~~~
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the method of stationary phase.

I-I T

2A(k0)F(k ,E ) i ( k  
~~ 

— —
~~-— — sgn U ”)

lim V(~ ,T) = 
2 

~ e ~ (72)

(I. I~~
_
~ I)

hh/2

~ dk 2

where ~ k~ = 
_ (_.2 + ~~~

) and p = -k (l+k 2)

As T --  to have areal k0, one must choose large negative

values of 
~~~~~

, that is to say, asymptotically the distortion of

the riaht—going solitary wave emergin’~ from the collision propa-

gate to the left, in the opposite direction of propagation of

the main wave. The amp litude of this secondary wavelet as is

evident from (72) tends to zero asymptotically due to dis—

persion .

In conclusion we state that when two solitary waves have a —

head—on collision, the identities of each colliding wave are

preserved , (i.e. their wave profiles remain unchanged). However

the process of collision does leave two imprints on the emerging

waves : -

1) Simple phase shifts for each wave.

These phase shifts as given by the first term in Eq. (55)

and (56) have the effect as if the waves are retarded during

the- collision. •

• 2) Shedding of secondary waves. V
Each solitary wave sheds a secondary wave with a shape of 

~ 

r -

curve 3 in Fig. 1. These waves propagate with diminishing

amplitude in the opposite direction of the main waves.

4

- .
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Appendix Al 7

Substituting (18) into (17) we obtain a power series in .
Here we recast each order of alone.

0(C) = 0 
~~~~~~~ 

= o , ~~ = 0 (Al)

2 2  2
2 ~a1 a 2h~~

0 (c ) = 0 U -
~~

-
~~

— + ~. ~ i_-4-—— 
~~~~ 

2 
— (a

0+80) Bo~

aa
+ 4R.k ~~~~~~~~~~~~~ - j +

h 2k 2 a 2a
k 

~~
-
~

- [—
~~~

_ 

2
° + (~- a —  2R1a)a03 = 0 (A2)

The equation for is obtained from (A2) by replacing a1 by 8i

a
0 by 8c~ 

2~ by k, 0c’ 
by C0, Ti by ~~~ , a by b, and R1 by L1.

~~~~~ 2
3 aa 2h~9.G a Gt

~~~ ) = ° 4~• + ~5~-[ 
~~ an 2 -

* 
3 3 3  2 65 2 7 2

- 81F1 + (— -
~~

- 

~~~~~~~~~~~ 

b~~ - 

~~~~~

. 

~c?~ 
+

11 aa8 aa
+ r ba

080 
- _-~~~~~9~ + .

~~
. Ix~,8~,)] + 4kL 2~~~~~

_

1 1 132 13 5
- 

~~~~~
- G~ 

- 

~~-(9a080 + -~ — 8~ 
- 

~~
— a~~ 

- 
~~ b~~)] +

k kL~ ~ 
+ (3a0-a)F~ 

— (2R 2—~~ )a
2
a

-~~~ a%-~~-- = •
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A2 j
The equation for 82 can be obtained from (A3) in a similar fashion

as from (A2).

0(c 4 ) = 0 U 
~~

-

~

--
~~ 

+ ~ ~~
— [ . .. ]  + 4kt ~~~0

[ J  +

h k a F*
k 

~~~~ [ 
0 

a~
2 + (3c*0—a)F~ 

- (2R 3 
— ~~-)a 3a0

393 2 2 201 3 591 4+ T~~~
a a -

~~~
— aa +

~~
- 4 - - - a ] = O  (A4)

where Ft = a2F1, Gt = b2G1, G~ = b3G2 and F~ = a3F2, F1 and F2

are arbitrary functions of integration of (A2) and (A3) for a1

and a2; G1 and G2 are the corresponding arbitrary functions of

integra tion for 81 and 82. The symbols [ . . . ]  in (A4 ) represent

all the non secular terms in the (c4) order.
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